Comments by Rafael Repullo on

An Analysis of the Literature on International Unconventional Monetary Policy

Saroj Bhattarai and Christopher Neely

Norges Bank Workshop on Unconventional Monetary Policy 21-22 June 2021

Preamble

- Why am I discussing this paper?
 - \rightarrow I am not a macroeconomist
 - \rightarrow It's a survey paper
 - → It's forthcoming in the *Journal of Economic Literature*
- Organizers wanted an "outsider's perspective"
 - \rightarrow Incorporating financial stability implications
- My discussion will focus on what I miss in the paper
 - \rightarrow With only brief reference to financial stability issues

What is UMP?

- Unconventional Monetary Policy (UMP) consists of a wide variety of tools recently used by central banks
 - \rightarrow Asset purchases (QE)
 - \rightarrow Forward guidance
 - → Lending tools (Targeted LTROs, Funding for lending)
 - \rightarrow Reserves tools (interest on reserves, tiering)
 - \rightarrow Negative interest rates
 - Unconventional use of a conventional tool

Structure of paper

Theoretical frameworks
Description of UMP by four major central banks
Empirical studies of effects of UMP on asset markets
Empirical studies of effects of UMP on macro variables
6 pp
Final assessment
8 pp

What am I going to do?

- Brief comment on empirical sections
- Brief description of theoretical model
- Three critical comments on theoretical model
 - \rightarrow What do we mean by "money"?
 - \rightarrow What is the balance sheet of the central bank?
 - \rightarrow What do we mean by seigniorage?
- Financial stability effects of UMP
- Concluding remarks

Part 1

Comment on empirical sections

Comment on empirical sections (i)

- Assessing effects of UMP is an extremely difficult task
- Assessing effects of Conventional MP (CMP) is difficult
 - \rightarrow Have to identify the unanticipated change in policy rate
 - \rightarrow Because policy changes are (partly) endogenous
 - \rightarrow But at least there is a "single" policy rate

Comment on empirical sections (ii)

- With UMP we have a large set of policy variables
- Take, for example, the case of QE
 - \rightarrow It is not just size of the purchases
 - \rightarrow The characteristics of the assets (issuer, maturities, ratings)
- Moreover, changes are generally bundled with other MP actions
 - \rightarrow And sometimes also regulatory actions

Comment on empirical sections (iii)

• How can one identify the unanticipated change in policy?

 \rightarrow And then assess its effects on financial or macro variables?

- A most challenging task indeed
 - \rightarrow Which central banks have to perform anyway
 - \rightarrow Because they have to account for their actions
- Not a great prospect
 - \rightarrow Especially, given absence of a solid theoretical framework
 - \rightarrow That could guide interpretation of empirical results

Part 2

Description of theoretical model

Theoretical model (i)

- Infinitely lived households with utility function that depends on
 - \rightarrow Consumption of a continuum of differentiated varieties
 - \rightarrow Labor supply
 - \rightarrow Real balances
- Monopolistically competitive firms that produce these varieties
 - \rightarrow Hire labor in a competitive labor market
 - \rightarrow Set nominal prices subject to convex adjustment costs

Theoretical model (ii)

- Four assets held by households
 - \rightarrow Money (cash) that pays zero interest
 - \rightarrow Central bank reserves = one-period government bonds
 - \rightarrow Two-period government bonds
- Constant supply of one- and two-period government bonds
- Central bank + government budget constraint
- Policy rate is interest on reserves = interest of one-period bonds
- Taylor rule determines the evolution of policy rate

A first query

• In the model

 \rightarrow Reserves and one-period bonds are perfect substitutes

• In reality

 \rightarrow Reserves can only be held by banks, not by households

- \rightarrow But there are no banks in the theoretical model
- Implication

 \rightarrow Simple QE (purchase of one-period bonds) is irrelevant

What about other types of QE?

• Results show conditions for all types of QE to be irrelevant

 \rightarrow They only affect the path of two-period interest rates

- Then introduce frictions that make them relevant
 - \rightarrow Market segmentation
 - \rightarrow Limits to arbitrage, etc.

Part 3

Critical comments on theoretical model

Part 3a

What do we mean by "money"?

On the concept of "money"

- Money in the model is a cash-like zero interest asset
 - \rightarrow Passively issued by central bank on demand
 - \rightarrow Provides liquidity services to household
- In reality, cash is completely irrelevant for monetary policy
 - \rightarrow As any central banker would attest
- It is time to think of models that move away from this setup
 - \rightarrow Replace it by reserves issued by central banks
 - \rightarrow This requires having banks in the model: long overdue!

Part 3b

What is the balance sheet of central bank?

Balance sheet of central bank (i)

- Balance sheet does not explicitly appear in model
 - \rightarrow Most peculiar given nature of QE

 \rightarrow Since reserves and one-period bonds are perfect substitutes

Balance sheet of central bank (ii)

Central bank at date t

Assets $= A_t$	$M_t = \operatorname{Cash}$
	$L_t = \text{Reserves}$
	$K_t = Capital$

Notation

 \rightarrow Return of central bank assets = r_{t+1}

 \rightarrow Return of central bank reserves = r_{0t+1} (policy rate)

 \rightarrow Return of cash = 0

Balance sheet of central bank (iii)

Central bank at date *t*

Assets $= A_t$	$M_t = \operatorname{Cash}$
	$L_t = \text{Reserves}$
	$K_t = Capital$

Central bank at beginning of date t + 1

$$\begin{array}{l} A_t \left(1 + r_{t+1} \right) & M_t \\ & L_t \left(1 + r_{0t+1} \right) \\ & K_{t+1} \end{array}$$

21

Balance sheet of central bank (iv)

- Assume initial value of central bank's capital $K_t = 0$
- Profits of central bank (transferred to government)

$$\Pi_{t+1} = K_{t+1} - K_t = K_{t+1}$$

$$= A_t (1 + r_{t+1}) - L_t (1 + r_{0t+1}) - M_t$$

$$= (L_t + M_t)(1 + r_{t+1}) - L_t (1 + r_{0t+1}) - M_t$$

$$= \underbrace{L_t (r_{t+1} - r_{0t+1})}_{\uparrow} + \underbrace{M_t r_{t+1}}_{\uparrow}$$
Profits from reserves Profits from cash

Balance sheet of central bank (v)

• Expression for profits corresponds to real world central banks

 \rightarrow But it is not the one that appears in this paper

- \rightarrow As well as in most papers in the literature
- The correct expression

$$\Pi_{t+1} = L_t (r_{t+1} - r_{0t+1}) + M_t r_{t+1}$$

• The standard expression

$$T_{t+1} = L_t(r_{t+1} - r_{0t+1}) + \underbrace{M_{t+1} - M_t}_{\uparrow}$$

Printing of money

Part 3c

What do we mean by seigniorage?

On the concept of seigniorage (i)

• Two concepts of seigniorage

 \rightarrow Profits of central bank

$$\Pi_{t+1} = L_t (r_{t+1} - r_{0t+1}) + M_t r_{t+1}$$

 \rightarrow Change in zero cost liabilities of central bank

$$\Delta M_{t+1} = M_{t+1} - M_t$$

On the concept of seigniorage (ii)

- Some reasons why one should prefer the first concept
 - \rightarrow Corresponds to payments of central bank to government
 - \rightarrow Avoids problem that ΔM_{t+1} is exogenous (and volatile)
 - \rightarrow Avoids assumption that cash will be with us forever
 - \rightarrow Important given future central bank digital currencies

On the concept of seigniorage (iii)

- It's surprising how slow progress has been on this front
 - \rightarrow Even central bankers that should know better
 - \rightarrow Keep working with models in which seigniorage is ΔM_{t+1}
- It is high time to abandon this fiction
 - \rightarrow Work with the reality of central bank balance sheets
 - \rightarrow Work with the reality of central bank profits

Part 4

Financial stability effects of UMP

Financial stability effects of UMP (i)

- Assessing effects of CMP on financial stability is difficult
 → Consensus on "too low for too long" no longer exists
- Low policy rates may not increase risk-taking
 - \rightarrow When banks have significant market power
 - \rightarrow Martinez-Miera and Repullo (2021)
- Assessing effects of UMP is even more difficult

Financial stability effects of UMP (ii)

- A general principle
 - \rightarrow To assess the effects of policies on risk-taking
 - \rightarrow Look at effects on banks' charter values
 - \rightarrow Both theoretically and empirically (stock market values)
- High charter values induce prudent behavior
 - \rightarrow Banks have an incentive to preserve them
- Use this principle for first assessment of some UMPs

Financial stability effects of UMP (iii)

- Asset purchases (QE): Bad for financial stability
 - \rightarrow Replace high yielding assets by low yielding reserves
 - \rightarrow Although there may be some capital gains in short run
- Lending tools (Targeted LTROs): Good for financial stability
 - \rightarrow Reduce banks' costs of funding
- Reserves tools (tiering): Good for financial stability

 \rightarrow Increase return of banks' reserves

• Negative interest rates: Bad for financial stability

 \rightarrow ZLB on deposit rates reduce intermediation margins

31

Financial stability effects of UMP (iv)

- Previous assessment ignores general equilibrium effects
 - \rightarrow Through lending and investment decisions
 - \rightarrow Through consumption, employment, output, etc.
- This requires to embed financial institutions into macro models

Concluding remarks

Concluding remarks (i)

• UMP is here to stay

 \rightarrow We'd better spend resources in understanding its effects

- A challenging task
 - \rightarrow Empirical identification is difficult
 - \rightarrow Theoretical models lag behind the reality of central banks

Concluding remarks (ii)

- No financial intermediaries in standard money-macro models
- Unsatisfactory state of affairs
 - \rightarrow Banks play key role in transmission of CMP
 - \rightarrow Even more so for UMP
- It's surprising how slow progress has been on this front
 - \rightarrow More than 10 years after Global Financial Crisis
 - \rightarrow Except for a few notable contributions

Concluding remarks (iii)

- We need financial intermediaries to consider
 - \rightarrow Risk-taking channel of monetary policy
 - \rightarrow Effect of macroprudential policies
 - \rightarrow Joint effects of monetary and macroprudential policies
- We also need financial intermediaries to consider
 - \rightarrow Effect of the introduction of CBDCs
- Summing up: more efforts should be directed towards modeling
 - \rightarrow Understanding UMP requires unconventional models
 - \rightarrow Let's build them!

Some references

• Bigio, S., and J. Bianchi (2021), "Banks, Liquidity Management, and Monetary Policy," *Econometrica*, forthcoming.

• Brunnermeier, M., and Y. Koby (2019), "The Reversal Interest Rate."

• Gertler, M., and P. Karadi (2011), "A Model of Unconventional Monetary Policy,", *Journal of Monetary Economics*.

• Heider, F., F. Saidi, and G. Schepens (2019), "Life below Zero: Bank Lending under Negative Policy Rates," *Review of Financial Studies*.

• Martinez-Miera, D., and R. Repullo (2020), "Interest Rates, Market Power, and Financial Stability."

• Piazzesi, M., C. Rogers, and M. Schneider (2021), "Money and Banking in a New Keynesian Model."

• Repullo, R. (2020a), "The Reversal Interest Rate: A Critical Review."

• Ulate, M. (2021), "Going Negative at the Zero Lower Bound: The Effects of Negative Nominal Interest Rates," *American Economic Review*.